
Page 1 of 6

C3D File Format Extensions
Draft Proposal: 23 April 2001

Author: Jonathan Attias

Vicon Motion Systems Ltd

Assumptions
It is assumed that the reader is familiar with the original C3D file specification. Vicon
Motion Systems produce a document describing our use of the format. Further information
on the standard format is available at http://www.c3d.org/.

Overview
This document describes a mechanism for extending C3D files in a consistent manner and
suggests one extension to deal with the issue of storing measurement data from motion
capture systems that use more than the current C3D limit of seven cameras.

C3D files have always been capable of storing arbitrary data sections but, to date, most if
not all applications support only the originally defined sections containing parameters and
combined motion and analogue data. These sections are special because the C3D header
section contains explicit pointers (record number references) to locate these sections.

There are a number of undefined words in the C3D header that could be used as pointers
to new data sections. In fact, there are so many (159 according to the original
specification) that these should suffice for all future needs. However, the problem with this
approach is that the assignment of slots (undefined words) must be agreed by committee.
Any organisation should be able to start developing a new data section without having to
first obtain an agreed slot number, which could be very time consuming. Picking a slot at
random in the hope that it doesn’t clash with anybody else’s choice is not a very appealing
approach.

Apart from the arbitrary nature of the slot choices, every application vendor will need to be
aware of everyone else’s extensions and understand each slot as it is assigned. In other
words, we would have to hard code knowledge that slot 42 corresponds to the “FROZEN
PEAS” data section and slot 127 corresponds to the “ELECTRIC MONK” data section, etc.
This is important because it is necessary to know exactly where each section starts and
ends in order to preserve data that you don’t understand when loading and then saving
files. For example, there is currently no information in the C3D file to determine where the
parameters section ends. All we can assume is that it ends where the next section starts
but if we don’t know that one or more sections have been inserted between the
parameters and 3D data sections (because we haven’t kept up to date with the latest
agreed slot assignments) then we risk stomping all over those sections with new
parameters or truncating them because we don’t think the parameters section needs to be
that big.

Data section extension proposal
In this proposal, we take advantage of the fact that every C3D file has a parameters
section and virtually every application that reads C3D files contains code to read and write
these parameters in a standard manner.

The proposal is simply to add a new parameter group called “CONTENTS” that lists the
data sections by name and the record numbers where they can be found. An
acknowledgment must at this point be made to Andrew Danis since we jointly discussed
this idea at a meeting some years ago.

There is still a risk that different vendors or organisations may start to develop sections
with the same name but this is thought to be less likely. If the section is essentially private

http://www.c3d.org/

Page 2 of 6

to a particular organisation then some organisation specific prefix (or suffix) could be
included in the section name to be certain of uniqueness.

If the section is generally applicable then it is probably best to involve others in discussion
to avoid duplication of effort on the same type of section but that is a different matter from
having to globally agree to a slot number before even experimenting with a new data
section.

CONTENTS: group
So the “CONTENTS” parameter group would go something like this:

Name Type Dimension Usage
LABELS ASCII (L, N) N section labels of length L (typically 16

characters).
NAMES
(?)

ASCII (L, N) N human readable section names of
length L (typically 16 characters).
The LABELS parameters are intended
for programmatic use and should never
change for a given section. Having a
separate NAMES parameter allows for a
human friendly, language-specific
version to be presented to the user
along with a description (see below) to
show them the file contents.

DESCRIPTIONS
(?)

ASCII (L, N) N section descriptions of length L
(typically 64 characters).
Descriptions are always optional in that
they are often left blank. It might be
difficult to agree on descriptions for
standard sections but they might be
useful for unusual sections and can also
be language specific to suit local users.

DATA_STARTS Integer (N) N 1-based record numbers
corresponding to the start of each data
section. Records are 512 bytes in
length.

SIZE
(?)

Integer (N) N values corresponding to the size of
each data section in 512-byte records.
In principal, every section should be
listed in this group so this parameter
should not be necessary. The sizes can
be calculated by examining the
DATA_STARTS value of the following
section.
Although useful for making it easier to
determine the size of a section without
having to scan the rest of the contents, it
does place some further burden on file
writers, especially when it comes to the
(usually) final 3D data section where the
size might not be known until it is
completely written.
It is suggested that this parameter not
be included but is offered here for
discussion purposes.

Page 3 of 6

Although not strictly necessary, the sections should be listed in the group tables in
ascending order of START_RECORD just to make life easier for everyone, especially if
the SIZE parameter is not included.

Standard sections:
Label Description Typical Start Record
PARAMETERS Blah 2
3D_DATA Interleaved 3D points and analogue data 10

Related parameters
Many data sections will require a number of parameters to allow them to be correctly
interpreted. One option is to embed all of this information into a header of the data section
itself. However, there is a perfectly good standard “PARAMETERS” section already in the
file which everyone understands and has code to read from and write to. The preference is
therefore to use this section wherever possible.

Discussion points
What parameter group should the related parameters belong to? If a section is completely
independent then it makes sense for the related parameters to form their own group.
Sometimes, the parameters might need to form multiple groups (such as the existing
POINT and ANALOG parameter groups which both relate to the same 3D data section). If
the section represents an extension to existing data for which a group already exists then
there is an argument for adding the new parameters to the existing group.

If I form a new parameter group, what should it be called? The answer to this depends on
how many new parameter groups need to be formed to service the new data section. If
there is only one then the names should correspond. It makes sense for the parameter
group name to exactly match the data section label. The C3D convention thus far tends
towards singular naming for parameter groups. So we have POINT rather than POINTS
and FORCE_PLATFORM rather than FORCE_PLATFORMS, etc. If the singular
convention is followed then the section labels will also tend towards singular variants,
which can be a little odd or counter-intuitive at times.

Should underscores be used everywhere or not? A further convention within the C3D file is
to use underscore (‘_’) characters to separate words in parameter and group names rather
than spaces. There is nothing in the C3D specification that makes this a necessity since
the names are always provided with a length field. However, there may be applications
that interpret parameters embedded within textual instructions that may use spaces to
separate elements. These applications would be unable to distinguish the parameters
correctly if they contained spaces. The same applies to data section labels, which should
therefore also use underscores rather than spaces.

What about the questionable parameters in the CONTENTS group (or should that be
CONTENT group)? Should the NAMES, DESCRIPTIONS and SIZE parameters be
included or not?

What about DATA_START parameters? If the CONTENTS group contains the start record
for each data section then a separate parameter should not be necessary. Some data
sections might not even have a parameter group. However, a POINT:DATA_START
parameter already exists (though there is no corresponding ANALOG:DATA_START
parameter) and it is a lot more convenient for a reader that knows about a particular data
section to get the start record directly from a SECTION:DATA_START parameter, if
present, than to scan through the CONTENTS:LABELS parameter list for “SECTION” and
then extract the corresponding CONTENTS:DATA_STARTS parameter value. The
downside is duplication of storage and the risk of inconsistency between them.

Page 4 of 6

Extended storage of camera masks
The C3D file specification for 3D point data allows for only 7 bits of camera mask
information to be associated with each data point, regardless of whether the data is stored
in integer or real format. Since the format’s introduction many years ago, systems are now
widely available with more than 7 cameras.

There have been many ideas in recent times for incorporating the extra information into
the 3D data but most, if not all, so far have involved changes that are not 100% backward
compatible. They would necessitate that applications be changed in some way in order to
cope with these extended files correctly. Also, many of the schemes extended the mask
only up to 24 cameras, which is not sufficient for future demands.

One example of a prior approach forced the use of real format data and making use of the
extra 16 bits that become available. This only allowed for 23 cameras (not enough by
today’s standards) and potentially meant storing invalid floating point values. It also meant
a re-interpretation of the data so an extra flag would have been necessary which legacy
software would simply not know to read.

Another approach involved extending the point data structures themselves with similar but
more drastic breaking of existing code.

Requirements
Any scheme for incorporating further camera mask information must satisfy these
requirements:

• Any number of cameras

• 100% backward compatibility

By saying that the scheme must be 100% backward compatible, we mean that we must
not have to modify any existing software in order for it to successfully read extended data
files. There is too much legacy software around that would be totally impractical to update.
Of course, that does not mean that this software will be able to extract the new
information, only that the information it already reads will not be affected in any way.

Proposed solution
Given the flavour of this document, the proposed solution not surprisingly involves the
introduction of a new data section. It is the only way to guarantee backwards compatibility
and satisfy the increasing demands for more cameras.

“CAMERA_MASK” data section
Note that the name follows the singular naming convention for parameter groups. Data
appears as one mask for each specified point trajectory for each field as follows:

Start Field

Start Field + 1

End Field - 1

End Field

.

.

.

Mask 1

Mask 2

Mask N

.

.

.

Byte 1

Byte M

.

.

.

Page 5 of 6

Where N is the number of point trajectories for which camera masks need to be stored and
M is the number of bytes required to store the masks for every camera. The mask bytes
are stored least significant first so they correspond to cameras as follows:

Byte 1: cameras 1 - 8

Byte 2: cameras 9 – 16

Byte 3: cameras 17 – 24

Byte 4: cameras 25 – 32

etc.

The total storage required for the section in bytes is:

Total Bytes = F * N * M

Where: F = #fields = End Field – Start Field + 1,
N = #trajectories
M = #bytes per mask = (#cameras – 1) DIV 8 + 1

Note that DIV means integer division.

If the number of cameras (#cameras) is less than 8 (i.e. 2 to 7) then this new section can
be omitted entirely since the original scheme is perfectly adequate.

Parameter storage
A few parameters are required to correctly interpret the contents of the CAMERA_MASK
data section:

• The number (M) of bytes stored for each camera mask

• The number (N) of trajectories for which masks are stored

• The correspondence of these trajectories with those in the 3D data section

It is questionable whether these parameters should belong to the existing POINT group or
form a new parameter group. For cleanliness, it is suggested that a new CAMERA_MASK
group be formed. The advantage is that if the CAMERA_MASK data section is not present
then the whole CAMERA_MASK parameter group would be omitted rather than just a few
parameters from the POINT group. Also, the parameter names are much simpler.

Name Type Dimension Usage
DATA_START Integer Scalar 1-based record number corresponding

to the start of the CAMERA_MASK data
section. Records are 512 bytes in
length.

MASK_SIZE Integer Scalar The number of bytes stored for each
point camera mask.

USED Integer Scalar The number (N) of trajectories for which
extended camera masks are stored.

LABELS ASCII (L, N) N trajectory labels of length L
associated, by order, with masks in the
CAMERA_MASK data section. The
labels must also correspond to those
found in the POINT:LABELS[n] lists
though they may appear here in a
different order and not all trajectories
may have extended camera masks.

Page 6 of 6

LABELS2 ASCII (L, N) Additional labels beyond the 255 limit in
LABELS. Note that LABELS3,
LABELS4, etc. parameters may also be
present as necessary.

Existing masks
At the time of writing, the Vicon Workstation software wraps camera contributions onto the
available 7 bits so bit 8 represents a union (binary OR’ing of) cameras 1, 8, 15 and 22, bit
9 represents cameras 2, 9, 16, and 23, etc. It was thought that, given the inability to
correctly hold all of the mask information, it was more useful to indicate ‘some’ contribution
by cameras rather than none at all if not seen by any of the first 7 cameras. Some
applications use this information to determine whether a point was measured (has camera
contributions) or calculated (has no contributions). With the introduction of new
visualisation features, this has turned out to be misleading since the actual contributing
camera is ambiguous and can therefore be misinterpreted.

Instead, it is better to store only the first 7 cameras in the existing camera masks so that
they are at least correct. The correct way to determine whether a point is measured or
calculated is to look at the point residual. If this is zero then the point is calculated,
otherwise it is measured.

Usage strategies
1. If reading all point data into memory:

a. Read in all the data as before with the old camera masks.

b. Check for the existence of the CAMERA_MASK parameter group and data
section.

c. For each field, read the extended camera masks and patch up the in-memory
masks of the appropriate trajectories.

2. If reading a single trajectory point:

a. Read in the trajectory point and old camera mask as before.

b. Check for the existence of the CAMERA_MASK parameter group and data
section.

c. Check if the trajectory is included in the extended mask section.

d. Calculate the mask data index, extract the extended mask and patch up the
point data.

3. When writing a C3D file:

a. Determine whether the extended camera masks are necessary or not (are
there more than 7 cameras?)

b. Determine which trajectories need extended mask storage. If this cannot
easily be determined, assume all trajectories.

c. Set up the CAMERA_MASK parameters and write the parameters section as
normal.

d. Write other data sections as appropriate.

e. Write the CAMERA_MASK data section.

f. Write the 3D data section as before.

